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ICASEWORKSHOPON PROGRAMMINGCOMPUTATIONALGRIDS*

THOMAShi.EIDSONIANDMERRELLL.PATRICK_

Abstract. A workshoponProgrammingComputationalGridsfor distributedapplicationswasheld
onApril 1213,2001at ICASE,NASALangleyResearchCenter.Thestatedobjectiveof thework-
shopwasto define,discuss,andclarifyissuescriticalto theadvancementof ProblemSolvingEnviron-
ments/ComputationalFrameworksfor solvinglargemulti-scale,multi-componentscientificapplicationsus-
ingdistributed,heterogeneouscomputingsystems.Thisreportdocumentsa setof recommendationsfor
NASAthat suggestanapproachfor developinganapplicationdevelopmentenvironmentthat will meet
futureapplicationneeds.

Key words, softwarecomponents,computationalframeworks,scientificapplications,computational
grids,distributedcomputing

Subjectclassification.ComputerScience

1. Introduction. A workshoponProgrammingComputationalGridsfordistributedapplicationswas
heldonApril 1213,2001at ICASE,NASALangleyResearchCenter.Twelveresearchers,softwarede-
velopers,andusersof ProblemSolvingEnvironments/ComputationalFrameworksfl'omgovernmentand
universitylaboratoriesparticipated.Thestatedobjectiveoftheworkshopwasto define,discuss,andclarify
issuescriticalto theadvancementof ProblemSolvingEnvironments/ComputationalFrameworksforsolv-
inglargemulti-scale,multi-componentscientificapplicationsusingdistributed,heterogeneouscomputing
systems.

Aspartof thepreparationfortheworkshop,a smallpanelof experiencedapplicationdeveloperswas
assembledandrecommendationsforprogrammingneedswerediscussed.Theresultsofthesediscussionswere
presentedtotheworkshopattendees.Duringthediscussionofrequirementsandotherissueswithboththe
applicationdevelopersandthesystemsoftwaredevelopers,it wasclearthatneithergroupfullyunderstood
theideasandproblemsoftheother.It wasalsoclearthatneithergroupisgiventhetimeandsupportto
investigatetherequirementsofmodernapplicationsprogrammingandto translatethoserequirementsinto
designrequirementsforProblemSolvingRequirements.Notwithstanding,thesediscussionsledto a setof
recommendationsforNASAmanagersandapplicationdeveloperswhoneedtousecomputationalframeworks
to solvetheirmulti-disciplinaryscientificapplications.Whiletargetedfor NASA,therecommendations
shouldbeofinterestto theentirescientificprogrammingcommunity.

FollowingtheIntroduction,thereportopenswithasetofdefinitions.Theprimaryfocusofthereport
is therecommendationsto NASAwhicharepresentedin Section4 of thereport. In Sections5 and6,
severaltechnicalissuesrelatingto scientificprogrammingrequirementsarepresented,whichareintendedto
augmenttherecommendations.Whiletherewasageneralconsensusthat softwarecomponenttechnology
offersasignificantpotential,thereisdisagreementonspecificrequirementsof scientificapplications.The
resultis thatthedevelopmentofprototypeframeworksaswellasgeneralresearchintoscientificsoftware
componentslacksfocus.Sections5 and6 ofthereportelaborateonsomeof the issuesthat needto be

*ThisworkshopwassupportedbytheNationalAeronauticsandSpaceAdministrationunderNASAContractNo.NAS1-
97046whiletheauthorswereinresidenceatICASE,NASALangleyResearchCenter,Hampton,VA23681-2199.

IICASE,MS132C,NASALangleyResearchCenter,Hampton,VA23681,teidson_icase.edu
$ICASE,MS132C,NASALangleyResearchCenter,Hampton,VA23681,mpatr±ck©±case.edu



addressed before the research community can move to a more focused approach.

The technology direction suggested in this report is already being taken by some researchers at NASA,

as well as others in the scientific community. The report recommends more focus and co-ordination. A set

of these related research projects are summarized in the Appendix.

2. Definitions. The programming technology discussed in this report is in an evolving research stage.

As such, there are few terms with definitive definitions. The following definitions were included to provide

clarity to the discussions that follow.

A Problem-Solving Environment (PSE) is an integrated collection of software tools that facilitates

problem-solving in some domain. This includes defining, building, executing, and managing the applica-

tion. Additionally, this can include viewing and analyzing results related to the problem being solved.

A computational frumework is an integrated collection of software tools that facilitates the development

and execution of an application. A framework is the core feature of some PSEs.

A programming model is a set of abstractions and a set of rules that specify the combination of those

abstractions in a form that can be translated to create execution instructions for an application.

A computational Grid is a collection of heterogeneous computational hardware resources that are dis-

tributed (often over a wide area) and the software to use those resources. An important feature that converts

a set of computers and software connected by an internet into a Grid is a set of support services (resource

management, remote process management, communication libraries, security, monitoring support, etc.) and

an organizational structure that provides usage guidelines or rules.

Grid programming is just a subset of distributed programming. Distributed programming initially was

focused on developing applications distributed on a local area network (LAN) where administration and

security problems were minor. Also, the heterogeneous nature of the computers on the LAN typically

covered a narrow range. Grid programming just extends distributed programming into more complicated,

wide-area, heterogeneous environments.

An element application is a code in stand-alone executable or library form, that is focused on a relatively

narrow aspect of some physics, mathematics, graphics, or other science. Sometimes an element application

corresponds to some scientific discipline; thus, element applications are sometimes called discipline applica-

tions.

A composite application is defined as an application that is developed from the integration of smaller

element applications. Examples of composite applications are (i) codes built fl'om numerical libraries and

(ii) a design code that integrates several discipline codes along with an optimization code.

Metadata is information about some programming entity that supports its use in some more comprehen-

sive program (or meta-prvgram) such as a composite application. Metadata includes interface specifications

that describe how to access the programming entity and behavioral specifications that describe conceptual

and practical details of correctly integrating the entity into the meta-program. For example, the information

expressed in a Fortran subroutine could define some numerical algorithm. Interface metadata would describe

the arguments needed to call that subroutine, typically in some general language. Behavioral metadata might

describe the parallelization strategy as it relates to target machines. Behavioral metadata could even be

used to describe physical and numerical assumptions embedded in the numerical algorithm.

A software component is a basic unit of software packaged for use in efficiently building some larger

composite application. The software package includes metadata that minimally defines any interfaces to

that software so that some computational framework can more easily provide the necessary integration.

Software component technology is intended



• to supportsoftwarereuseandsharing,
• to simplifyuseofmultiplelanguages,
• to supporttheefficientbuildingoflargeapplications,and
• to assistbuildingdistributedapplications.

3. RelatedForums.Twokeyscientificcommunity-basedgroupsthatareplwingaleadershiprolein
thedevelopmentofsoftwarecomponentandcomputationalgridtechnologiesaredescribed.Theseorganiza-
tionsplayarolein theimplementationoftheworkshop'srecommendations.

TheGlobalGridForum(GlobalGF)[3]isa community-initiatedforurnofindividualresearchersand
practitionersworkingondistributedcomputingorGridtechnologies.GlobalGFis theresultofa merger
oftheGridForum,theeGridEuropeanGridForum,andtheGridcommunityin Asia-Pacific.GlobalGF
focusesonthepromotionanddevelopmentof Gridtechnologiesandapplicationsviathedevelopmentand
documentationof "bestpractices,"implementationguidelines,andstandardswithanemphasisonrough
consensusandrunningcode.Effortsarealsoaimedatthedevelopmentof abroadlybasedIntegratedGrid
Architecturethat canserveto guidetheresearch,development,anddeploymentactivitiesoftheemerging
Gridcommunities.SuchanarchitecturewilladvancetheimpactoftheGridthroughthebroaddeployment
andadoptionoffundamentalbasicservicesandbysharingcodeamongdifferentapplicationswithcommon
requirements.

TheCommonComponentArchitectureForum(CCAForum)[4]isagroupof governmentlab(mainly
DOE)anduniversityresearcherswhoseobjectiveis to definea minimalsetof standardfeaturesthat a
high-performancecomponenthasto provide,orcanexpect,inorderto beabletousecomponentsdeveloped
withindifferentPSEs.Suchstandardswill promoteinteroperabilitybetweencomponentsdevelopedby
differentteamsacrossdifferentinstitutions.

4. Recommendationsfor FutureDirection.Becauseoftheunprecedentedincreasein bothsingle
platformanddistributedcomputingcapabilities,scientificcomputerapplicationsareevolvingtotacklemuch
larger,multi-scaleproblemswherethesimulationormodelingof a rangeof differentphysicsneedsto be
solved,oftenasacoupledsystem.EmergingGridtechnologiesforwide-areadistributedcomputingprovide
thefoundationfortheselarge-scaleapplicationsto useinternetsinbuildingacomputationalinfrastructure
fortheirsolutions.

Historically,scientificapplicationdevelopershaveexhibiteda greatdealof independencein thepro-
grammingstylestheyusedwhilefocusingontheneedforcreativityandpersistentexperimentationoftheir
disciplinarycodes.Giventhemulti-disciplinaryanddistributednatureoftheapplications,thecurrentneed
isto focusontechnologytransferto reapmoreofthebenefitsofyearsofsoftwareresearchanddevelopment
ofdisciplinarycodes,softwarelibraries,andtools.Theresultis thatprogrammingefficiency,codemainte-
nance,codeclarity,andcodesharingwithperformanceguaranteeshavebecomemoreimportant.Thismeans
thatmodernprogrammingmethodologyandpracticesneedto befocusedongoodorganization,flexibility,
adaptability,andre-usability.Suchpracticesshouldsupportportabilityandinteroperabilityofcodes.The
recommendationsandassociateddiscussionsbelowtargettheseneeds.

• Recommendation1
A seientifieprogrammingmodel for developingand exeeutingeompositeapplieations
shouldbebasedonsoftwareeomponenttechnology.
A softwarecomponentis justa wayofpackagingcodein amodularmannerwithclearlydefined
interfaces.Metadatais includedaspartof thecomponentto providedetailsthat enhancethe
integrationofthatcodeintoanapplication.Theprimarytargetofasoftwarecomponentisaframe-



workthatunderstandsthepackagingprotocolandthemetadatato provideacomponentintegration
environment.If thepackagingandmetadataspecificationsareappropriatelydesigned,acodepack-
agedin componentformwill containinformationaboutits usethathasvalueoutsideatargeted,
component-basedframework.Thismeansthatthecomponentmethodologycanco-existwithother
programmingsystems.Anidealgoalwouldbefortheorganizationalandpackagingcharacteristicsto
bepervasiveintheprogrammingcommunitywhilesupportingalternativeprogrammingapproaches,
notpreventingthem.

AdvantagesofSoftwareComponentTechnology
1. Akeydesignfeatureofsoftwarecomponenttechnologyistherapidintegrationofanelement

code(orcomponent)intoacompositeapplication.
2. Codemaintenanceandvalidationwillbeeasierbecauseofthemodulardesignandformal

packagingrequirementsofthecomponentapproach.
3. Codesmaintainedincomponentformwill tendto bereusedbecauseoftheaboveadvan-

tages.Thisincludesnotonlyreusebythecodedeveloper,butefficientsharingofsoftware
withothers.

4. Distributedprogrammingcanbeeasierandmoreefficientwhenbasedoncomponenttech-
nology.Distributedsoftwaredevelopmentincludesbothconceptualandpracticalissues.
Theconceptualissuesdistributedlayout,synchronization,controlflow,dataflow are
ofteneasyforprogrammersto define.However,thepracticalissueofmanagingthemany
detailscanoverwhelmmanyprogrammers.Thesedetailsinclude:
• managingdistributedfiles,
• managingcodeat differentsiteswithdifferentcomputersanddifferentarchitectures,
• determiningwhichcodewill runwhere,and
• managingcomplexcontrolflows.

Softwarecomponenttechnologycanprovideasystematicformatthatassistsprogrammers
in solvingeachissueinastep-by-stepprocedure.

5. Metadataassociatedwithacomponent(integratedspecificationsanddocumentation)can
resultin increasedconfidencein themodifiedapplicationcreatedbychangingoraddinga
component.

6. Codeportabilitycanbeimproved;e.g.,a distributedcomputingsolutioncanbeusedto
runa codeonits "natural"architecture,ratherthanconvertingit to runontheuser's
desktop.

7. Computationalframeworksbasedonplug-and-playcomponentssupportrapidprototype
andproductioncodedevelopment.

8. Theneedto understandandto usemultiplelanguagesisreduced.Frequently,userswant
to useacodethatiswrittenin anunfamiliarlanguage.Useofgenericinterfacesreduces
theneedto learntheinterfacedetailsofsuchcodes.

CostsofSoftwareComponentTechnology
1. Programmerswillneedtolearnnewtoolsandtodevelopnewprogrammingpractices.The

long-termbenefitsresultingfromtheuseoftheresultingtoolsshouldoffsettheoverhead
associatedwithlearningnewtoolsandpractices.Animportantissueis to involveappli-
cationprogrammersandusersin thetooldesignsothatthemostappropriatetoolsare
developed.



2. Someprogrammerswill needto learnnewprogrammingstyles.However,thecomponent
programmingstylefocusesongoodcodeanddataorganizationtoenhanceunderstanding
anapplicationandto minimizedatamotion.Suchcodingpracticesarealreadyin useby
manyapplicationdevelopers.

3. Programmanagementwill needto beconvincedthat theresultingbenefitswill justify
thetransitioncosts.In manycases,currentprogrammingpracticessimplydonotsupport
managementobjectives.Complexcompositeapplicationsareneededtosolvemanymodern
engineeringproblems.Theseapplicationsneedsignificantincreasesin functionalitywith
decreasedsoftwareproductioncosts.

4. Legacycodeswillrequiresomeredesign.However,thecomponentapproachdoesallowfor
anincrementalredesignstrategy.Forexample,themostvaluablekernelscanbeconverted
to componentsfirst. Asmoreelementsbecomeavailablein componentform,it will be
cheapertorebuildacomplexlegacycodefromcomponentsascomparedto maintainingit.

5. Largeapplicationsystemswithcomplicatedcouplingsbetweencodeelementswill bethe
hardestto redesign.But evenhere,the incrementalapproachwill eventuallybecome
effective.

6. Thecomponentapproachdoesresultinsomeperformanceoverheadtosupportitsflexibil-
ity. Appropriatedesignofframeworkswillminimizethis.Inthelongrun,featuressuchas
rapidprototypingcanactuallyresultinbetterdeliveredperformanceasmoredesignscan
betestedwhenprogrammingtimeis limited.Mostimportantly,componentdesignsfree
theauthorofaparticularcomponenttofocusmostofhiseffortsoncreatingoptimizedver-
sionsfordifferentsituations,ratherthanspendingtimemaintaininginfrastructurecodes
withnoimpactonperformance.

7. Thecomponentapproachmaypreventcompilersandruntimesystemsfromperforming
cross-moduleoptimization.Ontheotherhand,compilerscouldevolveandusetherecta-
dataassociatedwithcomponentstobetterhandletheseoptimizations.

Recommendation2
NASA shouldform a task forceof softwareandapplicationdevelopersalongwith po-
tential usersto providecomputationalframeworkrequirementsandworkwith the CCA
Formndevelopers.It is critically important that NASA providesits requirementsto
both the CCAand GlobalGrid Formns.
Thedesignandimplementationof aneffectivecomponent-basedframeworkwill needinputfrom
applicationdevelopersandusers.Applicationscientistsshouldhelpto defineframeworkspecifica-
tionsbyidentifyingtherequirementsforcomponentsandservicesthatwillbeneededtobuildtheir
applications.Additionally,applicationdevelopersneedto suggestprogrammingmodelsthatwillbe
mostunderstandableandthatwillbeefficientto use.Anyframeworkspecificationsshouldsupport
oneormoresuchprogrammingmodels.Providingacloserelationshipbetweensoftwaredevelopers
anduserswillspeedupthedevelopmentofaqualityproduct.
TheCommonComponentArchitecture(CCA)Forumoffersthebeststartingpointforcoordinat-
ingthedevelopmentofscientificcomponenttechnology.TheCCAspecificationoffersanattractive
startingpointbecauseits designfocusesonspecifyingtheminimumessentialelementsof acom-
ponentprogrammingenvironment.Thiswill allowthescientificcommunityto developthehigher
abstractionsto bestsuittheirneeds.TheCCAForumcouldbeviewedasfocusingonalimited,



butextremelyimportantelementof thecompleteGridprogrammingproblemthat is thefocusof
theGlobalGridForum.Thiselement,developingthecoreofaprogrammingmodelandframework
infrastructure,providesafoundationforefficientuseoftheGridand,thus,will requireinteraction
betweentheCCAForumandall theworkinggroupsin theGlobalGridForum.Specifically,the
CCAForumcouldfocusondemonstratingtheviabilityofprototypeand/orstandardimplementa-
tionsof theCCAspecification.It is importantto showthat aCCA-compliantframeworkcanbe
deliveredasanopensourceplatformthat will workwithall Gridstandards.It shouldbeeasily
downloadedandinstalled.

• Recommendation3
NASA shouldjoin with other mission-orientedgovermnentagencies,maybethrough
the National CoordinatingOfficefor InformationTechnologyResearchand Develop-
ment,but at leastwith DOE andDOD, in workingwith the CCA Forumin defining
referencestandardsfor component-basedcomputationalframeworks.It shouldencour-
ageandpromotecoordinationbetweenthe CCA Forumandthe GlobalGrid Formn.
Thesuccessofsoftware-componenttechnologywilldependonthecreativityinboththedesignand
implementationofsystemsand,thus,willdependonpastandfuturegovernment-supportedresearch
doneat universitiesandgovernmentlabs.However,nomatterhowgoodthetechnology,asignifi-
cantandpossiblyprimarybenefitwillbethecreationof asynergeticsoftwareenvironmentwhere
codescanbeeasilyshared.Suchanenvironmentmustbebasedonstandards,andthis iswhere
governmentagenciesshouldplayasignificantrole.
Whilescientificsoftwarecomponentsoffersignificantbenefitsforprogrammingefficiencyandcode
sharing,a viablemarketis alsoneededto supportthedevelopmentcost.Thesmallsizeof the
scientificmarketcannotsupporthighsoftwaredevelopmentcosts.
Anorganizedprogramto transitionprovenhigh-performancecomponenttechnologyandapplica-
tions/userdesignstoindustryisnecessaryto satisfysoftwarelife-cyclerequirements(maintenance,
support,andtraining)at NASA.Programmingenvironmentsarelargeandgenerallyevolvingsoft-
waresystems.Developmentandmaintenancecostsaretoo largeto behandledby a smallor
modest-sizedlaboratory.Theopen-sourceapproachis goodfor includingcreativityin theearly
developmentalstagesof asoftwaresystem,butwill notprovidethereliabilityneededto support
largeapplicationprojects.However,NASAaswellasthescientificcommunity,alsocannotaffordto
supportasingle-vendorsolution.Newideasleadingtoimprovedtechnologyneedto beimplemented
in atimelyfashionto supportresearchgoals.
Potentialbenefitsto NASAin carryingoutRecommendation3areasfollows.

It will helpNASAto identifyits ownrequirementsbasedonits applicationsandstrategic
vision.
It will provideincentiveto commercialvendorsto join theCCAForum,whichin turn will
influencenewframeworkproducts.
It cansharethecostofthedesignofframeworkswithotheragenciesthathavesimilarappli-
cationsandprogrammingrequirements.
It willenableNASAto reducesoftwaredevelopmentcostsin thelongrun.
It providesa convenientvehiclefor partneringwithuniversitiesandindustryin developing
workablestandardsandbestpractices.



• Recommendation4
NASAshouldpromoteandsupporttheadoptionof scientificsoftwarecomponenttech-
nologythroughaneducationprogramfor applicationdevelopersand usersanda tech-
nologytransition effort.
Asnotedearlier,scientificprogrammerstendtodeveloptheirsoftwareindependently,partlybecause
programmingtoolsforscientificcomputingenvironmentshavehadlittle acceptance.If thisis to
change,theuseofsoftware-componenttechnologywillneedtobenotonlyencouraged,butsupported
byNASAandotheragenciesin thedevelopmentoftheirmission-criticalsoftware.Theywillneed
to educatetheirapplicationdevelopersandusersof thebenefitsof thenewtechnologies.User
educationshouldinclude:

anunderstandingoftheroleofsoftware-componenttechnologyinanoverallenvironmentwhere
codesareshared,
trainingin thetoolsneededto createandusecomponents,
anunderstandingofgoodcodedesignfor usewithcomponent-basedfl'ameworksandother
tools,
asuggestedtransitionstrategyto changetheirprogrammingstyles,and
suggestedstrategiesto includeorto migrateoldcodestothenewenvironments.

TheTaskForcesuggestedin Recommendation2 abovecouldplaya vital rolebycollectingrea-
sonablydetaileduser-basedrequirementsthatwill helpguidethedesignof newtechnologiesand
createa synergybetweenapplicationdevelopersandprogrammingsystemdevelopersleadingto
moreadoptionof newtechnology.It couldorganizeworkshopsandholdseminarsto promotea
broaderunderstandingofsoftware-componenttechnologiesandtheiruse.Thetaskforcecouldas-
sistusersandapplicationdevelopersindevelopingatransitions_rategyforconvertingoldcodesto
thenewtechnologybeyondtheuseofsimplewrappingtoolsandtemplates.Togainfullbenefitsof
thenewtechnology,oldcodesshouldbesplitintoappropriatemodularpiecesthat bestintegrate
intothetechnology.Mostimportantly,toolsareneededforintegratingnewandlegacycodesinto
new/bigger/morefunctionaloverarchingmulti-disciplinaryapplications.

5. DiscussionRelatedto Recommendation1.

• Goodmodularapplicationdesignis important.
Overtheyearsscientificprogrammershavelearnedthat goodprogrammingrequiresgoodorga-
nizationof dataandexecutionsteps.In theearlydays,goodprogrammingwasfocusedheavily
onperformance.Morerecently,codereuseandmaintenancehavebecomeincreasinglyimportant.
Goodorganizationtranslatesintoamoreunderstandableprogrammingstyle.Thetrendtowarddis-
tributedapplicationsjust increasestheimportancesofgooddesign.Distributedcomputingusually
includesawiderangeofcommunicationperformance.Appropriateorganizationandlocationofdata
to minimizedatatransferscanreapbigperformancegains.Also,themanagementofcodebecomes
moredifficultfordistributedapplicationsasthecodeelementsmus_begroupedforappropriateand
flexibledistributionto thevariouscomputersbeingused.
Forapplicationsdesignedtoexecuteonasinglecomputer,associatedcodeelementscanbemanaged
withminimalco-ordinationandtheloadercanlinkthemtogetherwithgoodefficiency.Formodern
applications,relatedcodeelementswillneedtobebuiltinamodularfashionsothatcomputational
frameworkscanlinktheelementstoformacompositeapplication.Theeffectivenessoftheframework
will belimitedbythequalityofthemodulardesignoftheelementspassedto it. Onecriteriais



thatsuchmodulesshouldbechosento allowcodeelementsthatusethesamedatato beeasilyand
efficientlygroupedononecomputer.However,distributedcomputingisusedwhenlargedatasizes
orperformanceneedsdictatethatapproach.Modulesalsoneedto bedesignedto supportefficient
programmingandexecutionofdatatransfers.
Components designed with good modularity support the previously mentioned advantages: rapid in-

tegration, plug-and-play capability, easier" code validation and maintenaee, and increased code reuse.

A good modular design is the essence of a systematic format needed to build successful distributed

applications.

• Programming flexibility enables good performance.

Scientific applications can have a wide range of performance requirements, even within the same

application. Once the appropriate modularity is chosen, a programming model is needed that allows

the programmer to communicate the performance requirements of at least the critical modular

elements (or components).

The optimization of data flow is clearly one need. Historically, performance optimization has focused

on organizing the location of data storage and orchestrating data transfers. The details of data

storage and transfers are different for distributed and grid programming, but they are still important

to performance. A programming model needs to provide flexible, easy-to-program abstractions

that give the application developer sufficient control to create quality applications. For example,

depending on the size of a data set and the frequency of its use, a programmer may choose to transfer

data between different computers for use by different element applications. Alternatively, it might

be more efficient to integrate several element applications into the same process for access to a data

set that cannot be moved efficiently.

Distributed applications will need a variety of performance solutions. Remote process creation,

remote task execution, data transfers, event signals, and other remote operations will have different

requirements for different applications. Even the choice of computer on which to execute a particular

code can be important. And, the choices can be dynamic when code parameters such as data sizes are

allowed to vary. A capability is needed which allows application developers to indicate performance

requirements so that the underlying PSE can provide the appropriate implementation. One approach

to achieving flexibility while supporting single-implementation components is via a filter strategy.

For cases where the flexibility requirement relates to communication between different application

elements, filtering software can be inserted between the relevant outputs and inputs.

A component framework cart result in decreased performance over" a "hand-coded" solution that di-

rectly uses a low-level, high-performance communication system. However, prototypes arc showing

that the performance overhead can be kept small. The key is to define specifications and create imple-

mentations where appropriate information is passed from the application developer to the finmcwork

via mctadata. This is also a key to support code reuse. Once code usage characteristics, such as

performance hints, are packaged with the code to form a component, other users will be less reluctant

to incorporate that code in their composite application.

• Metadata should not be limited to interface specifications.

Interface specifications describe the calling arguments for the method or function being accessed from

a component. This is the minimal information needed to use a component. Metadata can also include

specifications related to internal code behavior. This allows a code developer to alert a potential

user or composite application developer of important algorithm characteristics. When very large



compositeapplicationsarebuilt,thecorrectinclusionofallelementapplicationsintothecomposite
applicationcannotbemanuallymanagedbytraditionalcodeinspectionbytheapplicationdeveloper.
Sophisticatedmetadataschemesandcontractsspecifyingcompositeapplicationrequirementswill
beneededto allowtheframeworkto moreaccuratelyverifythemanydetailsof correctlybuilding
thecompositeapplication.
Art aggressive use of mctadata is needed for" code reuse, plug-and-play capability, rapid integration,

and other" component advantages to reap full benefits. When lO's or"lO0's of element codes are merged

to create a composite application, even a group of programmers will find it difficult to accurately

analyze all aspects of integrating a large set of codes. Mctadata/contract systems will be needed

to reduce the amount of detail that the programmer directly analyzes. This is particularly true for

distributed applications.

Portability and interoperability support are still needed.

The increased importance of code reuse and sharing translates to concerns about portability and

interoperability. The component approach, particularly for distributed applications, can reduce one

aspect of this problem. Instead of porting a code, one can just use remote process management and

other distributed techniques to run the code on a friendly architecture. In some cases a code will

not have to be ported across different architectures.

However, other aspects of portability are still a concern. The benefits of using component method-

ology are increased when there are lots of compatible PSEs. Multiple component specifications and

framework designs can create incompatibilities. Even if the single component specification is used,

different vendor frameworks will implement different contorl and communication protocols if such

protocols are not part of an interoperability standard. Thus, the use of component and distributed

programming technology will shift portability concerns from architecture issues to framework issues.

There is a significant amount of disagreement in the scientific community over what should be the

nature of solutions to portability and interoperability. This may be a significant obstacle to the

rapid development of software component technology for the scientific community.

The number and nature of standards will significantly affect the benefits of component technology

relating to code reuse, plug-and-play capability, and rapid intcgrution.

Standards should not stifle creativity.

The wealth of knowledge, experience, and system infrastructure that results from all the recent Grid

research can most effectively be leveraged if it were possible to pick features from each system and

create a best-of-all-worlds system. Standardization is one way to achieve this level of portability

and interoperability.

On the other hand, the lifeblood of the scientific community is creativity. Scientific programming

standards should, therefore, support continual research, development, and insertion of new program-

ruing technologies. This requires standards that are flexible enough to support continual experimen-

tation while also providing programming efficiency. This is one reason for not directly adopting

current business-based programming solutions.

The benefits of component methodology will only bc obtained if there is wide acceptance. Otherwise,

they will be viewed as just another programming overhead that is best avoided. While the design

process of open standards cart be frustrating, the result will be better" accepted by scientists and

engineers. A logical consequence is that a single software or" hardware vendor should not define

scientific programming standards.
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FIG. 6.1.

6. Discussion Related to Recommendation 2.

• Programming models are needed to bridge the gap between framework designs and application

programming requirements.

As mentioned in the Introduction, system software developers and application developers have not

sufficiently exchanged ideas as to the exact nature of future programming systems. Lists of pro-

gramming features and execution services have been shared, but this is not sufficient. Programming

is an interactive task where the application developer communicates desired application concepts

through the abstractions and rules of some programming language or system. These abstractions

and rules, an implementation of some programming model, need to be carefully designed. If they are

too complex, programmers will either not learn them or will become distracted from their primary

task implementing an algorithm that models some physics. If they are too simplistic, programmers

will become frustrated with the inability to efficiently express the necessary application concepts.

A sufficiently broad programming model needs to be defined that can be used as a guide for imple-

menting software component technology.

• A development strategy for scientific components is needed that supports growth.

The need for creativity and flexibility calls for a development strategy that can grow. Software

component technology supports growth and the insertion of changes. However, a growth strategy

should not only be applied to the development of scientific applications, but also to the development

of a component/framework specification and to the evolution of frameworks from the prototype to

the production stage.

The development of scientific software components and frameworks should begin with as simple a

design as possible, but one that captures the fundamental functionality. As shown in Figure 6.1,

one would develop a core framework specification and implementation. Framework services would

be added as components. This would allow various framework designs to be tested in parallel with

the development of the initial application components. One of the major problems with getting

good requirements for component-based frameworks is that most application developers lack the

appropriate experience. A concurrent system and application software development strategy should

help prevent application developers from being stuck with premature design decisions by system

developers.

10



FIG. 6.2.

In addition, it is not clear how many styles of frameworks and service components are desired. A

single-core computational framework implementation would appear ideal. But can it provide the

range of functionality that scientists and engineers desire? Similarly, will one set of synergetic service

components be sufficient?

This suggests that a set of core-design specifications be developed and supported by NASA. From

this specification, a base reference implementation should be developed and supported. A set of core

service components should also be implemented as part of the base reference implantation. After

this the design process should be allowed to mature for a period of time. Based on feedback from

early application and system software developers, the reference implementation can be modified and

alternative implementations can be created.

In the long run, the scientific component methodology should not focus on a single set of Grid

services.

The component-based framework recommended in this report is one type of Problem Solving En-

vironment that can be used to develop and execute scientific applications in Grid environments.

Figure 6.2 shows the relationship of the various software layers in such an environment. The soft-

ware (OS, system libraries) used to access Grid resources will probably always have a heterogeneous

nature. Various Grid service systems have been developed to unify these heterogeneous interfaces.

Currently the Globus Toolkit [_] is being targeted by the [6] IPG project as the primary set of Grid

services. Targeting one set of services is beneficial to the early development of software systems and

even user applications. However, programming models and problem solving environment designs

should not be tied to a specific set of services. A good implementation of a software system should

either be relatively easy to port to a different set of Grid services or, even better, be configurable to

support multiple sets.

• Multiple languages and architectures should be supported.

A component/framework specification should support most languages and hardware architectures

used by scientists and engineers. However, a single language is needed to define interface and

behavioral specifications.

The emphasis on graphical user interfaces should be secondary.

Graphical programming environments are being increasingly used in the scientific community. Graph-
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icalinterfacesareusefulforallaspectsofapplicationdevelopmentandusageincludingtheprogram-
ruingof high-levelwork-flow.Thisis importantfor thedevelopmen_of applicationsbyteams.
High-levelinformationcanbedisseminatedmorerapidlyin graphicalform.Additionally,suchan
environmentcanreducetheeffortsneededto educateusersaboutnewprogrammingmodels,and
reduce_heslopeofthelearningcurveofnewtoolsand_heinevitableinertiatomigrateto newand
differentparadigms.
Ontheotherhand,scientific-componenttechnologyisstillinadevelopments_age.Determiningthe
bes_designforcomponentsto meettherequirementsofthescientificcommunityisabigchallenge.
Developinggraphicalinterfacesischallengingin its ownrightaspoorinterfacescandeterusage.It
is recommendedthattheemphasisbefirstplacedondevelopingscientificcornponen_technology.

• Gridprogrammingrequirementssuchastrustandsecurityshouldbesupported.
Trustandsecurityalsorequireprogrammingflexibility.Securityservicescanthemselvesbecompo-
nents,andscientificcomponents(forperformancereasons)mustbeallowedtorelytransparentlyon
thesecurityservicesoftheirenvironment.Thatis,scientificprogrammersshouldnotbeburdened
withunderstandingimplementationde_ailsofnetworksecurity.

• Proposedsolutionsandprototypesgenerallyneedto scaleto largeapplicationsandto support
differentapplicationdesigns.
Manyprototypesareusedto giveimpressivedemonstrations;especiallywheninterestinggraphics
is included.Unfortunately,theapplicationsusedin thedemonstrationsarenotrepresentativeof
the largesizeor designof morecomplexapplications.Thisisnotjust a resultof deceit,but it
is anartifactof limiteddevelopmentbudgets.Also,complexapplicationsthatwouldbestbenefit
fromasophisticatedprogrammingsystemhavenotbeenbuiltbecausetheyaretoocostlyto build
withoutsuchasystema '_Catch-22".Thebottomlineis thatevaluationofprototypesmustbe
donecarefullyto considertheneedforapplicationgrowth.

• Batchaswellasinteractiveprogrammingenvironmentsneedsupport.
It iscommonforsoftwaresystemstobedevelopedininteractiveenvironments.However,asignificant
amountofscientificapplicationsareruninbatchenvironments.Aslargerapplicationsaredeveloped,
therewillbeaneedto runusingmultiplebatchsystemsalongwithinteractivesystemsatthesame
time.Researchonco-allocatingresourcesisbeingconducted;oneexamplebeingtheGlobusProject
[5].Thisisanotherexampleofarequirementthatisoftenoverlookedwhenevaluatingprototypes.

• Businesssolutionsshouldnotbeignored.
Whilethedevelopmentandadoptionofscientificstandardsis important,business-basedsolutions,
suchasCORBA,shouldnotbeignoredbecausesuchtechnologiesarebeingusedindevelopingsome
engineeringtools.Thiscallsforanapproachthatsupportstheintegrationofcomponentsbasedon
thedifferenttechnologies.

7. Summary:FuturePlans.Thisworkshopis justonestepin _heICASEgoalofresearchingso-
lutionsformodernProblemSolvingEnvironmentsforNASA.Theresultsofthisworkshopalongwiththe
requirementsgeneratedbyapplicationdevelopergroupswillbepresented_oNASApersonnel.Feedback
fromNASAwill begatheredduringthesepresentationsto refinetherecommendations.Theworkshopre-
suitswill alsobesharedwiththeGlobalGridForum,theCCAForum,interestedgovernmentlaboratories
andwithothergroupssuchascommercialcompanies.

Appendix:RelatedProjectsandProducts.
• CurrentUseofComponentsandFrameworksatNASA
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SoftwarecomponenttechnologyisbeingusedinsomeNASAprojects.Thisincludessystemsbased
oncommercialtechnologydevelopedforbusinessapplicationsandprototypeframeworksbasedon
component-likeconcepts.However,thereisnoorganized,overallapproachforapplyingcomponent
technologiestoNASAscientificandengineeringapplications.Componentsprovidethemostbenefits
whentheyareusedto supportthesharingofcodeanddataandthisrequiresstandards.Although
somestandardsexistforbusinessapplications,astandards-basedapproachisneededforscientific
applications.NASAshouldhelpin definingsuchstandardsandbea leaderin applyingmodern
softwaredevelopmentpracticesto makesurethat newcodesareinitiallydevelopedaccordingto
suchpracticesratherthanretrofittingthemafterthefact.
Component-likeapproacheswereusedinprojects,suchas[7]FIDO,at NASALangleyin theearly
1990's.Heretheemphasiswasonlearningthefundamentalsof developingmodularapplications
that couldbeusedin distributedheterogeneouscomputingenvironments.TheMulti-disciplinary
OptimizationBranchandtheHPCCOfficeshavecontinuallysupportedprojectstobuilddistributed,
design-optimizationapplications.Theseapplicationdevelopmentsusedseveralcommercialpackages
(CORBA,JavaRMI,iSIGHT,andPhoenixModelCenterandAnalysisServer).NASAalsohas
supportedthird-partydevelopmentviatheSBIRProgram(theLAWEprototypebyHighTechnology
Corporation[8])andviasupportofresearchatICASE(theNautilusandArcadeprojects).

iSIGHTisa softwareframeworkthat automatesthetedious,repetitiousjobof runningyour
designanalysisprograms,iSIGHTwasdevelopedbyEngineousSoftwareInc. [9].
Phoenixproductsandprocessesintegrateandautomatedataflowbetweencriticalapplications
acrosstheenterprise.ModelCenterandAnalysisServerweredevelopedbyPhoenixIntegration
[10].

Thevalueofthecomponent-basedframeworkshasalsobeenrecognizedbyNASAmanagementas
pertheNASAESSHPCCRound-3requestforproposals.It wasnoted,however,thatmostefforts
emphasizedthewrappingof legacycodesto turnthemintocomponents.NASAshouldstrongly
supportmodernsoftwaredevelopmentpracticesto makesurethat newcodesaredevelopedfrom
thebeginningaccordingto suchpracticesratherthanretrofittingthemafterthefact,whichreduces
thebenefits.
TheNumericalPropulsionSystemSimulation(NPSS[11])Projectcenteredat NASAGlennRe-
searchCenterisdevelopinganadvancedengineeringenvironmentorintegratedcollectionofsoftware
programsfortheanalysisanddesignofaircraftenginesand,eventually,spacetransportationcompo-
nents.It accomplishesthatbygeneratingsophisticatedcomputersimulationsofanaerospaceobject
orsystem,thuspermittinganengineerto "test"variousdesignoptionswithouthavingto conduct
costlyandtime-consumingreal-lifetests.NPSSusesanobject-orientedapproachandincorporates
anumberof componentconcepts.Elementsofanenginearemodeledwithcodespackagedsothat
theyfit togetherfora completeenginesimulation.Thecomponent-likedesignallowsforetficient
interchangeofelementcodes.
At NASAAmes(NASDivision),acomponentframeworkeffort,Growler,supportsenvironments
thataredistributedacrossheterogeneousplatforms,includingenvironmentsthatrequirelow-latency
interactivity.Growlerincludescapabilitiesforcollaborativevisualization,analysis,andcomputa-
tionalsteering.Todate,applicationssupportingseveralsciencedomainsofparticularinterestto
NASAhavebeendemonstrated.Anotherprojectistitled"Agent-basedIntegratedAnalysisFrame-
work."Thisisaprototypeframeworkforintegratinglow-andhigh-fidelityanalysistoolsto conduct
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multidisciplinaryanalysisoverdistributedcomputingsystems.Thepackageincludesinterpolation
andgrid-generationtoolsto transferdataamongCAD,CFD,andFEManalysispackages.A dis-
tributedcomputingcapabilitywasaddedusingAnalysisServer,a commercialsoftwarepackage.
Prototypeagentbehaviorwasaddedtoseveralcomponents.Anexpertsystemwasusedtomanage
inputdata,selectanappropriateflow,andbuildCFDflowsolverinputfiles.
CommercialTechnologyResources
Commercialsoftware-componenttechnology(CORBA[12],JavaEnterprise[13],JavaBeans,[14],
andDCOM[151)hasprimarilybeendevelopedfor businessapplications.Thistechnologyis dis-
cussedin [2]. Thesesystemsprovideavailabletools,demonstratedsuccess,andtestedreference
specifications,but thesefeaturesfallshortofmeetingscientificrequirements.
Commercialtechnologies

1. lacksupportforscientificdatatypes,
2. lacksupportforscientificprogramminglanguages,
3. arenotavailableformostsupercomputersystems,
4. generallyexhibitpoorruntimeperformance,and
5. aretoocomplexforeasyadoption.

Componenttechnologiesforscientificuseshoulddrawonthebestfeaturesofcommercialtechnolo-
gies,butbeenhancedto meettheneedsofscientificusers.
AnexampleofacommercialeffortthatistargetingscientificapplicationsistheFIPERProjectthat
includesaconsortiumofcompaniesalongwithlimitedgovernmentlabanduniversityinvolvement.
FIPERisdocumentedin [1].GeneralElectricCorporateResearchandDevelopmentis leadingthe
projectthathasbeenfundedbytheNationalInstituteforStandards(NIST-ATP).Thiseffortis
focusedondevelopingaproductaroundexistingandemergingcommercialtechnology.Thereisno
guaranteethatanyresultingproductwillmeettherequirementsofscientificcomponentshighlighted
below.
ResearchProjects
TheCCAForumefforthasbeenmentionedaspartoftheaboverecommendations.At leastfour
prototypesareassociatedwiththiseffort.

1. CCAFFEINEisaprototypeofadesignforSingleProgramMultipleData(SPMD)computing
withcomponentsbasedontheexistingCCA specification. Development is based at Sandia

National Laboratory [16].

2. CCAT is a prototype, distributed, software-component system for scientific and engineering

applications that is based on the CCA specification. Development is based at Indiana University

[171.

3. The Componentsllnl.gov project is focusing on developing high-performance language interop-

erability capabilities for scientific languages, including Fortran 77, Fortran 90, C, C++, Java,

MATLAB, and Python. The Babel language interoperability tools and library are being devel-

oped in parallel with the CCA specification. [18].

4. Uintah is a Problem Solving Environment targeted for applications that are part of the C-SAFE

(Center for the Simulation of Accidental Fires & Explosions) project. Development is based at

the University of Utah. [19].

Another example is the High Level Architecture (HLA [20]). The HLA is a general purpose archi-

tecture for simulation reuse and interoperability. The HLA was developed under the leadership of
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theDefenseModelingandSimulationOffice(DMSO)to supportreuseandinteroperabilityacross
thelargenumbersofdifferenttypesofsimulationsdevelopedandmaintainedbytheDoD.TheHLA
BaselineDefinitionwascompletedin 1996.TheHLAwasadoptedastheFacilityforDistributed
SimulationSystems1.0bytheObjectManagementGroup(OMG)in November1998.TheHLA
wasapprovedasastandardthroughIEEE(IEEEStandard1516)in September2000.HLAis tar-
getedfordiscreteeventsimulationin contrastto equationsimulationsin thescientificcommunity.
However,therearesimilarities.
TheAdvancedProgrammingModels(APM[21])workinggroupof the GridForumis working
to identify-existingefforts.A whitepaper,titled "Problem Solving Environment Comparisons,"

provides an overview of several prototype efforts.

Below is a list of related projects at various government laboratories and universities.

1. Cactus is a PSE designed with a modular structure to enable parallel computation across

different architectures and to support collaborative code development. Development is based

at the Albert Einstein Institute in Germany. [22]

2. DataCutter is a programming model and runtime support system intended for data-intensive

applications that makes use of remote data sets. Development is based at the University of

Maryland. [2a]

3. aacoa is a software environment for coupling industrial simulation codes across the Grid using

CORBA. Development is based at IRISA/INRIA in Paris. [24]

4. The Nautilus Project is developing a programming and execution environment for building large

applications that execute on a computational Grid. Development is based at ICASE/NASA

Langley Research Center. [25]

5. Nimrod/G is a tool for automated modeling and execution of parameter sweep applications

over global computational Grids. Development is based at Monash University, Melbourne,

Australia. [26]

6. Ninf is a network-enabled, RPC-based server system for numerical computing. Development is

based at the Tokyo Institute of Technology. [27]

7. Opus Java is a Java-based framework for distributed, high-performance computing that provides

a high-level component infrastructure and that facilitates the seamless integration of HPF

modules into a larger distributed environment. Development is based at the Institute for

Software Science, University of Vienna. [28]

8. Netsolve is a project that aims to bring together disparate computational resources connected

by computer networks. It is a RPC-based client/agent/server system that allows one to access

both hardware and software components. [29]

9. Arcade is a web-based environment to design, execute, monitor, and control distributed appli-

cations. [30].

A related system is Legion, being developed at the University of Virginia. Legion is an integrated

architecture that provides a programming environment for the development and execution of appli-

cations in Grid environments. Legion includes lower-level, distributed computing services that are

not part of most of the PSE's mentioned in the report [31].
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